Normal view MARC view ISBD view

Radical scavenging and endogenous defence system inducing activities of 5-[(4-Chlorophenoxy) methyI]-1,3.4-oxadiazole-2-thiol: A novel antioxidant

By: Shehzadi, N.
Contributor(s): Hussain, K | Khan, M. T.
Publisher: Mumbai Indian Journal of Pharmaceutical Science 2018Edition: Vol. 80(6), November-December.Description: 1125-1135.Subject(s): PHARMACEUTICSOnline resources: Click here In: Indian journal of pharmaceutical sciencesSummary: 5-[(4-Chlorophenoxy)methyl]-1,3,4-oxadiazole-2-thiol owing to the presence of –SH group is expected to have a significant reducing potential, which could be translated into antioxidant activity and to prove this, the present study explored the antioxidant potential and binding pattern of this compound to oxidative stress-related protein targets. The antioxidant properties were determined using in vitro methods with ascorbic acid and butylated hydroxytoluene as standards while interactions of 5-[(4-chlorophenoxy)methyl]-1,3,4-oxadiazole-2-thiol with protein tyrosine kinase 2-β and glutathione reductase were determined using online software, Mcule 1-Click Docking, 3DLigandSite and COACH. The antioxidant activity of 5-[(4-chlorophenoxy)methyl]-1,3,4-oxadiazole-2-thiol was found to be 89.30±0.013, 81.20±0.002, 80.52±0.016, 54.81±0.007, 52.87±0.008, 34.44±0.019 and 19.91±0.014 % in hydrogen peroxide scavenging assay, 2,2-diphenyl-1-picrylhydrazyl radical scavenging assay, phosphomolybdenum assay, nitric oxide scavenging assay, reducing power assay, ferric thiocyanate assay and β-carotene bleaching assay, respectively. In all these assays, EC50 of 5-[(4-chlorophenoxy)methyl]-1,3,4-oxadiazole-2-thiol ranged from 0.32-0.93 mg/ml. The docking results indicated excellent binding to protein tyrosine kinase 2-β and glutathione reductase, maximum for the latter. The results of the present study revealed that 5-[(4-chlorophenoxy)methyl]-1,3,4-oxadiazole-2-thiol has the propensity to abrogate oxidation by inducing endogenous defence system and preventing radical chain reactions, hence might be considered a potential antioxidant for further investigations.
Tags from this library: No tags from this library for this title. Log in to add tags.
    average rating: 0.0 (0 votes)
Item type Current location Call number Status Date due Barcode Item holds
Articles Abstract Database Articles Abstract Database School of Pharmacy
Archieval Section
Not for loan 2018452
Total holds: 0

5-[(4-Chlorophenoxy)methyl]-1,3,4-oxadiazole-2-thiol owing to the presence of –SH group is expected to have a significant reducing potential, which could be translated into antioxidant activity and to prove this, the present study explored the antioxidant potential and binding pattern of this compound to oxidative stress-related protein targets. The antioxidant properties were determined using in vitro methods with ascorbic acid and butylated hydroxytoluene as standards while interactions of 5-[(4-chlorophenoxy)methyl]-1,3,4-oxadiazole-2-thiol with protein tyrosine kinase 2-β and glutathione reductase were determined using online software, Mcule 1-Click Docking, 3DLigandSite and COACH. The antioxidant activity of 5-[(4-chlorophenoxy)methyl]-1,3,4-oxadiazole-2-thiol was found to be 89.30±0.013, 81.20±0.002, 80.52±0.016, 54.81±0.007, 52.87±0.008, 34.44±0.019 and 19.91±0.014 % in hydrogen peroxide scavenging assay, 2,2-diphenyl-1-picrylhydrazyl radical scavenging assay, phosphomolybdenum assay, nitric oxide scavenging assay, reducing power assay, ferric thiocyanate assay and β-carotene bleaching assay, respectively. In all these assays, EC50 of 5-[(4-chlorophenoxy)methyl]-1,3,4-oxadiazole-2-thiol ranged from 0.32-0.93 mg/ml. The docking results indicated excellent binding to protein tyrosine kinase 2-β and glutathione reductase, maximum for the latter. The results of the present study revealed that 5-[(4-chlorophenoxy)methyl]-1,3,4-oxadiazole-2-thiol has the propensity to abrogate oxidation by inducing endogenous defence system and preventing radical chain reactions, hence might be considered a potential antioxidant for further investigations.

There are no comments for this item.

Log in to your account to post a comment.
Unique Visitors hit counter Total Page Views free counter
Implemented and Maintained by AIKTC-KRRC (Central Library).
For any Suggestions/Query Contact to library or Email: librarian@aiktc.ac.in | Ph:+91 22 27481247
Website/OPAC best viewed in Mozilla Browser in 1366X768 Resolution.

Powered by Koha